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ABSTRACT: The review surveys the recently ob-
tained data on the synthesis of fluorinated benza-
zoles and benzazines. C© 2006 Wiley Periodicals, Inc.
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INTRODUCTION

During the last two decades, the chemistry of
fluorine-containing compounds has been develop-
ing quite extensively. Because of unique character-
istics of fluorine atoms in organic molecules, they
have a great influence on their physicochemical
properties, and many fluorinated compounds have
already found wide application as technical materi-
als, pesticides, and effective drugs [1]. Also fluorine-
containing heterocycles have gained the attention
of chemists and biologists because many deriva-
tives show a high biological potency in their abil-
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ity to inhibit specific enzymes, their good solubility
in lipids, and their ability to penetrate through cell
membranes.

Anticancer 5-fluorouracil, antimicotic flucona-
zol, and antidepressant fluorobenzo-1,4-diazepine
derivatives are just a few examples of these well-
known series of fluorinated drugs. Also new an-
tibacterials of the so-called fluoroquinolone family,
derivatives of 6-fluoro-4-oxo-1,4-dihydroquinolin-3-
carboxylic acid such as commercially available pe-
floxacin, ofloxacin, cyprofloxacin, marbofloxacin,
etc. have been advanced [2]. A great deal of publi-
cations focus on structural modifications of fluoro-
quinolones as inhibitors of the DNA-gyrase (bacte-
rial topoisomerase), the enzyme that is responsible
for cleavage and renovation of the double he-
lix of bacterial DNA [3–5]. It has been shown
that fluoroquinolones can influence the eucariot
cells, sometimes showing a high cytotoxicity, and
thus being of interest as anticancer agents [6,7].
Some fluoroquinolones, for instance levofloxacin,
exhibit a remarkable anti-HIV activity, acting as
inhibitors of the HIV reverse transcriptase [8,9].
Also anti-HIV activity of some fluorinated quinox-
alines as non-nucleoside inhibitors of the reverse
transcriptase has been described in some literature
[10,11].

Similarities between fluorinated arenas and
DNA heterocyclic bases in electron density
distribution and the ability for F · · · H hydrogen bond
formation (Scheme 1) [12] make fluorinated ben-
zazoles and benzazines as intriguing subjects for
medicinal chemistry.
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SCHEME 1

DISCUSSION

Fluorinated Benzazoles

Fluorinated Benzimidazoles. One of the most ac-
cessible compounds in the series of fluorinated ben-
zimidazoles, 2-mercapto-5,6-difluorobenzimidazole
1 was prepared by condensation of 4,5-difluoro-
1,2-phenylenediamine with CS2. 2-Mercapto-5,6-
difluorobenzimidazole 1 was shown to react with
aromatic α-haloketones to give 2-phenacylthio-5,6-
difluorobenzimidazoles 2. The latter were trans-
formed by acylation and cyclodehydration in an
acetic anhydride–pyridine system into benzo[4,5]-
imidazo[2,1-b][1,3]thiazoles 4 (Scheme 2) [13]. Bi-
ological tests revealed that compound 4 (Ar = C6H5)
displayed a considerable activity toward the meastle
virus [14].

By reacting with β-ketoesters, 1H-5,6-
difluorobenzimidazol-2-acetonitrile 5 was trans-
formed into pyrido[1,2-a]-benzimidazoles 6 and
7 (Scheme 3), which proved to be active against
pathogenic orthopox viruses [15,16].

SCHEME 2

SCHEME 3

SCHEME 4

Fluorinated Benzofuroxanes. Features of tau-
tomerism in the series of furoxanes 8 (R = F,
morpholino) have been studied by 1H, 13C, and
19F NMR methods. The factors affecting tautomeric
equilibria as well as thermodynamic characteristics
of both isomers have been determined (Scheme 4)
[17,18].

Reacting with CH-active carbonyl compounds,
enamines or nitriles 5,6-difluorobenzofuroxane 8
(R = F) was transformed into the correspond-
ing 6,7-difluoroquinoxalin-1,4-dioxides 9 [19–21].
Nucleophilic displacement of a fluorine atom at C-6
in furoxane 8 allows one to modify the benzene ring,
while the furoxane ring remains unchanged in this
reaction (compounds 10). Electrophilic substitution
reactions on fluorinated benzofuroxanes and 8 bear-
ing an electron-donating substituent R are accom-
panied with the Boulton–Katrizky rearrangement,
resulting in the formation of nitro derivatives of ben-
zofurazanes 11 and benzotriazoles 12 (Scheme 5)
[18,22].
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SCHEME 5

SCHEME 6

Fluorinated Benzotriazoles. 1-Amino-5,6-diflu-
orobenzotriazole 13 was used to generate 4,
5-difluoro-1,2-dehydrobenzene (DHB) 14, and this
intermediate 14 was allowed to react in situ
with antracene, tetraphenyl-substituted cyclopenta-
dienone (tetracyclone), and furan to give a number
of fluorinated carbo- and heterocyclic compounds
15–18 (Scheme 5) [23,24].

Other Fluorinated Benzazoles and Condensed
Azoles. Metisazone (thiosemicarbazone of N-
methylisatin) is known as an antiviral agent that
inhibits reproduction of the pox-type viruses. It
can be used to prevent the infection caused by the
smallpox virus as well as diminish the postvac-
cinative complications. This is why a number of
fluorinated analogs of metisazone 20 have been
obtained by reacting 5,6-difluoroisatin 19 with
4,4-cycloalkylimino-thiosemicarbazides (Scheme 7)
[25].

Heating of ethyl 3-azolylamino-2-polyfluoro-
benzoyl acrylates 21 in acetonitrile in the presence of

KF was shown to give the corresponding azolo[1,5-
a]pyrimidines 22 (Scheme 8) [26].

Polyfluoroaryl fragments can be introduced
into heterocyclic molecules by using the reactive

SCHEME 7

SCHEME 8
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SCHEME 9

SCHEME 10

isothiocyanate moiety. In particular, the reac-
tion of heteryl hydrazines with polyfluoroben-
zoyl isothiocyanates 23 affords triazolobenzazoles
24, triazolopyrimidines, and triazolopyridazines 25
(Scheme 9).

Fluorinated Benzazines

Derivatives of Fluoroquinolonecarboxylic Acids.
Pefloxacine, levofloxacine, and other fluoroquinolone
antibacterials. A new approach for the synthe-
sis of pefloxacin 27, a representative of the flu-
oroquinolone family of antibacterials, has been
advanced on the basis of the difluorocarbene
methodology developed by Prof. O. Nefedov and
co-workers [27], which enables one to obtain 3,4-

difluoroaniline 26 followed by the known procedure
[28] (Scheme 10).

Synthetic approaches to other antibacteri-
als of the fluoroquinolone family, such as nor-
floxacin, ciprofloxacin, and enantiomerically pure
levofloxacin, have been worked out and patented
[29–38]. It is worth noting that (S)-naproxen chlo-
ride, N-sulfonyl-substituted (R)-proline, and (2S)-(6-
methoxynapht-2-yl)propionyl chloride were found
to be appropriate agents for kinetic resolution
of a racemic mixture of 7,8-difluoro-2,3-dihydro-
3-methyl-4H[1,4]benzoxazine (R,S) 28. The opti-
cally active (S)-isomer of 2-methyl-benzoxazine 29
was used as the key intermediate for the syn-
thesis of levofloxacin (S)-(-) 30 (Scheme 11) [32,
39–42].

SCHEME 11
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SCHEME 12

Modification of bicyclic fluoroquinolones. Two
principal approaches for the synthesis of bicyclic
4-pyridone-3-carboxylic acids are known from the
literature [2,3,43–45]. The first one is based on
using fluorinated anilines (31, A = CH, CF) or
2-aminopyridines (31, A = N) as starting materials.
It involves a condensation with ethoxymethylene
malonate, cyanoacetate, or acetoacetate to ob-
tain enamines 32. Intramolecular cyclization of
compounds 32 by action of polyphosphorus acid
(PPA) (the Gould–Jacobs reaction) affords the corre-
sponding fluoroquinolones (33, A = CH, CF) or 1,8-
naphthyridones (33, A = N) (Scheme 12).

The second approach suggests using fluorinated
benzoyl derivatives (34, A = CF, CH) or their nicoti-
noyl analogs (34, A = N) as starting materials and
involves the formation of benzoyl acrylates 36 as the
key intermediates (Scheme 13).

Compounds 36 can easily be modified to in-
troduce substituents at position 1 of the fluoro-
quinolone skeleton. Indeed, the reactions of ethyl
3-ethoxy-2-polyfluorobenzoyl acrylates 36 (A = CF)
with a variety of amines, hydrazines, or hydrazides
followed by intramolecular cyclizations, hydroly-
sis of the ethoxycarbonyl group, and the displace-
ment of fluorine atom at C-7 (Scheme 14) afford a
variety of fluoroquinolones 39–43 [26,46,47].

The synthesis of 2-polyfluoroalkyl-6,7-
difluoroquinolones 46 from 3,4-difluoroaniline

44 was achieved through acylation with anhydrides
of polyfluoroalkanecarboxylic acids, followed by
conversion of anilides obtained into the corre-
sponding imino chlorides 45. Finally, the expected
cyclization of compound 45 can be caused by
malonic or cyanoacetic esters to give quinolones 46
(Scheme 15) [48].

2-Amino-substituted 3-pentafluorobenzoyl acry-
lic acids 48 derived from pyruvic acid 47 were found
to undergo an intramolecular cyclization into fluoro-
4-quinolone-2-carboxylic acids 49 (Scheme 16)
[49–51].

Using ethyl 4-(R-amino)-2-oxo-3-pentafluoro-
benzoyl-but-3-enoate 50, obtained from copper
chelate of ethyl pentafluorobenzoyl pyruvate, N-
substituted 2-(4-oxo-5,6,7,8-tetrafluoro-1,4-dihydro-
quinolin-3-yl)glyoxylic acids and their esters 52
(Scheme 17) have been synthesized [52]. 3-
Arylhydrazones of fluorinated 2,3,4-triketoesters
(51, R = Ar), obtained by the coupling reaction
of aryldiazonium chlorides with fluoroacyl(aroyl)
pyruvates or their chelates, may be used for the
synthesis of fluorinated cinnolines. Indeed, aryl-
hydrazone 51 was converted to cinnolone 53 un-
der heating in DMSO in the presence of K2CO3

and dibenzo-18-crown-6 or under reflux in chloro-
form in the presence of NEt3[53,54]. Quinolones
(cinnolones) 54, 55 bearing quinoxalone, benzox-
azinone, or benzothiazinone fragments in position

SCHEME 13

Heteroatom Chemistry DOI 10.1002/hc



584 Nosova et al.

SCHEME 14

SCHEME 15

SCHEME 16

3 were obtained from 52, 53 and aromatic 1,2-
dinucleophiles (Scheme 17) [55].

The carboxylic group in position 3 of fluoro-
quinolones can be replaced with other substituents
to obtain new antibacterials [4], and many mod-
ifications of this type have been carried out. For
instance, hydrazino derivatives of fluoroquinolones
57 were found to react with potassium ethylxanto-
genate to give 3-heteryl(oxadiazolyl) derivatives of
quinolonecarboxylic acids 58 (Scheme 18) [56].

3-Nitro- and 3-bromo analogs of fluoro-
quinolones 61 were obtained by electrophilic nitra-
tion (bromination) of compound 60, derived from
decarboxylation of the corresponding carboxylic
acid 59. N-Alkylation or N-amination of 60 fol-
lowed by nucleophilic substitution of fluorine atom
at C-7 affording compounds 62 has been realized
(Scheme 19) [57].

Position 7 in fluoroquinolones is often subjected
to modification because a halogen atom at C-7

Heteroatom Chemistry DOI 10.1002/hc
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SCHEME 17

SCHEME 18

SCHEME 19

can easily be substituted by the action of N-, S-,
O-, and C-nucleophiles. In the case of 6-fluoro-
7-halogeno- or 6,8-difluoro-7-halogenoquinolones,
the displacement reaction proceeds selectively to
form 7-substituted products [3,47,58]. Interaction of
5,6,7,8-tetrafluoroquinolones (cinnolones) with N-
nucleophiles results in substitution of fluorine atoms
at C-5 and/or at C-7 [49,59].

In order to improve the pharmacokinetic prop-
erties of fluoroquinolones, they were modified with
aminoether or polyethyleneamine podand frag-
ments, which are able to penetrate through cell
membranes (Scheme 20) [60]. This modification

gave derivatives 63 that proved to be specifically
active against micobacteria under a low toxicity. It
is noteworthy that tuberculostatic activity of com-
pound 63 (R = H; X, Y = 0; n= 4) is five times higher
than that of pefloxacin [61].

The 1,3-dipolar cycloaddition methodology is an
effective synthetic tool to modify the structure of
6-fluoro-4-quinolon-3-carboxylic acids by introduc-
tion of a variety of heterocyclic fragments, such
as triazoles, triazolines, isoxalidines, and others
(Schemes 21 and 22) [58,62–65]. For instance, the
reaction of 7-azido derivative of 6-fluoroquinolone
64 with enamines of cyclic ketones and norbornene

SCHEME 20
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SCHEME 21

SCHEME 22

was shown to proceed smoothly, thus yielding the
corresponding exo-1,2,3-triazolines 65. These cy-
cloadducts undergo cationic rearrangements, which
are accompanied by extrusion of nitrogen and 1,2-
sigmatropic shift, thus resulting in amidines 66 or
aminonorbornane 67 (Scheme 21) [58,62].

Also, the cycloaddition reaction of azomethinox-
ide 68 with alkenes proceeds in a regio- and stereo-
selective manner, thus representing a general method
for the synthesis of a variety of stereoisomeric
7-isoxazolidines 69–73 (Scheme 22) [63–65].

Thioanalogs of pefloxacin, fluorinated
4H-1,4-benzothiazin-1,1-dioxides 75, and 1,4-

benzothiadiazine-1,1-dioxides 76 have been pre-
pared by using 2-amino-4,5-difluorobenzene sulfone
derivatives 74 (Scheme 23) [66,67].

Annelated fluoroquinolones. Interaction of
thiosemicarbazides, heterylhydrazides, or amidra-
zones with 3-ethoxy-2-polyfluorobenzoyl acry-
lates results in the formation of ethyl 3-(R-
thiocarbonylhydrazino)-, 3-(R-carbonylhydrazino)-,
and 3-(R-imidoylhydrazino)-substituted 2-poly-
fluorobenzoyl acrylates 77 (X = S, O, NH),
which can be converted into fluoroquinolones
78 (X = S, O, NH). The latter are capable of
further intramolecular cyclizations into tricyclic

Heteroatom Chemistry DOI 10.1002/hc
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SCHEME 23

SCHEME 24

1,3,4-oxa(thia)diazino[6,5,4-i, j]quinolines 79 (X =
S, O) and 1,2,4-triazino[5,6,1-i, j]quinolines 79 (X =
NH) (Scheme 24) [68–73].

An alternative cyclization of acrylates 77a leads
to pyrazoles [74]. Fluoroquinolones 79 (X = S, O)
and their 8- and 10-amino compounds are of special
interest, because many derivatives of this series are
associated with a wide range of pharmaceutical
properties and exhibit tuberculostatic, antibacterial,
and antitumor activities [47,75,76].

Intramolecular cyclization of 3-pentafluoro-
benzoylmethylen-3,4-dihydro-2H-1,4-benzoxazin-2-
one 80 takes place in DMSO at 200◦C without any
base; in the presence of triethylamine it proceeds
at 80◦C, thus producing 3-oxo-4,5,6-trifluoro-3H-
pyrido[3,2,1-k,l]phenoxazin-3-one 81 in a good yield
(Scheme 25) [77].

Heating of ethyl 3-[β-(benzazol-2-yl)hydrazino]-
2-(polyfluorobenzoyl)acrylates 82 in acetonitrile
with DBU yields derivatives of a novel
heterocyclic system, 4-oxo-4H-benzazolo[2′,3′:3,4]

SCHEME 25

[1,2,4]triazino[5,6,1-i, j]quinoline-5-carboxylic acids
84 (Scheme 26) [78,79].

In pentacyclic derivatives 84, the long-range
1H–19F and 19F–19F coupling constants 6 J (F, H) =
2.0–3.0 Hz, 7 J (F, F) = 3.5–4.0 Hz, and 9 J (F, H) = 3.0–
3.5 are observed in 19F NMR of 84 spectra.
Leaving abilities of fluorine atoms in the amino-
defluorination reaction of fused fluoroquinolones 84
are also different relative to bi- and tricyclic analogs
[80]. Also it is worth mentioning that compounds
84 proved to possess tuberculostatic and antitumor
activities [75,81].

Condensations of 2-cyanomethylbenzimidazole
or 2-benzoylmethylbenzimidazole 86 with polyflu-
orobenzoyl chlorides 85 provided new fluorinated
benzimidazo[1,2-a]quinolones 87 (Scheme 27)
[82].

The cycloaddition reaction of ylides generated
from N-(ethoxycarbonyl)methyl-substituted ethyl
6,7-difluoro-, 6,7,8-trifluoro-, and 5,6,7,8-tetrafluoro-
4-oxo-1,4-dihydroquinoline-3-carboxylates 88 on
the C C bond of methyl metacrylate results in the
[3 + 2] adducts, hexahydropyrrolo[1,2-a]quinolones
90 (Scheme 28) [83]. Another approach to [a]-fused
fluoroquinolones is illustrated by the reaction of
N-aminoquinolones 89 with acetylacetone and its
derivatives, thus affording pyrazolo[1,5-a]quinolines
91 (Scheme 28) [84]. In the reaction of 3-
acetyl (benzoyl)-substituted 5-oxo-7,8-difluoro-5,9a-
dihydropyrazolo[1,5-a]quinolin-4-carboxylates and
5-methoxy derivative 91 with bromine, the ipso-
substitution of acetyl (benzoyl) group takes place
[85,86].

Heteroatom Chemistry DOI 10.1002/hc
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SCHEME 26

SCHEME 27

SCHEME 28

1,4-Oxazin-2-one 92 (Y = O, X = CH2CH2, R = F),
obtained by condensation of pentafluorobenzoyl
pyruvic acid with ethanolamine in refluxing
dioxane, is able to undergo cyclization into 1,2,4,5-
tetrahydro[1,4]oxazino[4,3-a]quinolin-4,6-dione 93
(Y = O, X = CH2CH2, R = F) [50]. On heating
92 (Y = NH, X = benzo, R = OH) in DMSO in
the presence of NEt3, the formation of 1,2,3-
trifluoro-4-hydroxy-(5H)-5-oxoquinolino[1,2-a]-8H-
quinoxalin-7-one 93 (Y = NH, X = benzo, R = OH)
takes place (Scheme 29) [87].

The reaction of ethyl 4-chloro-6,7-difluoroquinolin-
3-carboxylate 94 (Y = OEt) with 2-aminothiazoles 95
leads to pyrimido[c]-annelated quinolines 96. Anal-
ogously, fluorinated thiazolo[2′,3′:2,3]pyrimido[4,5-
c]quinolines 97 are formed from 4-chloro-6,7-
difluoroquinolin-3-formyl chloride 94 (Y = Cl) and
2-aminothiazoles 95 (Scheme 30) [88,89].

7-Thiosubstituted 6,8-difluoro-4-oxo-1,4-dihydro-
3-quinolinecarboxilic acids 98 were obtained by in-
teraction of the corresponding 7-fluoro compound
with 2-aminoethanthiol or 2-mercaptoethanol; the
intramolecular cyclization of compounds 98 leads
to [g]- and [h]-annelated fluoroquinolones 99 and
100 (Scheme 31) [90].

SCHEME 29
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SCHEME 30

SCHEME 31

Fluorinated Quinazolinones. New synthetic
ways to 2-iminoquinazolin-4-ones 101, imidazo[2,1-
a]-, pyrazolo-[1,5-a]-, and triazolo[1,5-a]quinazolin-
5-ones 102–104, thiazolo[3,2-a]-, benzthiazolo[3,2-
a]-, and benzimidazo[3,2-a]quinazolin-5-ones 105–
107 as well as pyrido[1,2-a]quinazolin-6-ones 108
have been proposed based on the reaction of tetraflu-
orobenzoyl chloride 85 with N,N′-binucleophiles
(Scheme 32) [88,91,92].

Cyclizations of ethyl 3-[β-(benzimidazol-2-yl)-
hydrazino]-2-(polyfluorobenzoyl)-acrylates 82 caused
by action of potassium fluoride or triethylbenzyl-
ammonium chloride in refluxing acetonitrile afford
benzimidazo[1,2-a]pyrazolo[1,5-c]quinazoline 110
through the intermediate pyrazol-1-yl-substituted
benzimidazoles 109 (Scheme 33) [93,94].

Some derivatives 110 were found to possess an-
titumor and tuberculostatic activities [75,81].

SCHEME 32

Heteroatom Chemistry DOI 10.1002/hc



590 Nosova et al.

SCHEME 33

Fluorinated Quinoxalines. 6,7-Difluoroquinoxa-
lines have been obtained from the corresponding
1,2-diamino-4,5-difluorobenzene and glyoxal, and
quaternization of 6,7-difluoroquinoxalines by action
of the Meervein reagent has been studied [95]. The
reaction of 6,7-difluoroquinoxalines 111 with cy-
cloalkylimines, hydrazine, sodium hydroxide as well
as alkoxides was found to be dependent on the nature
of nucleophile, thus resulting in the displacement of
one or two fluorine atoms (Scheme 34) [96]. Also,

the features of nucleophilic substitution of fluorine
atoms in 2,3-disubstituted 6,7-difluoroquinoxalines
by action of amines, sodium azide, and methoxide
have been established [97]. As far as the amino-
defluorination reaction is concerned, the leaving
ability of fluorine atoms in 6,7-difluoroquinoxalin-
1,4-dioxides is higher than that of the corresponding
quinoxalines.

New methods for the synthesis of furo[2,3-
b]- and thiazolo[4,5-b]-annelated tetrahydroquinox-
alines 115, 116 have been proposed on the basis of
the tandem nucleophilic addition AN–AN reactions
of the quaternary quinoxalinium salts 114 with 1,3-
bifunctional nucleophilic reagents (Scheme 35) [98].

Fluorine-containing pyrido[2,3-b]- and pyrimido-
[4,5-b]quinoxalines 118, 119 were obtained by
condensations of 2-amino-3-cyano- and 2-amino-3-
(aminocarbonyl)-6,7-difluoro quinoxalines 117 with
dimethyl acetylene dicarboxylate and triethyl ortho-
formate, respectively (Scheme 36). A new approach

SCHEME 34

SCHEME 35

SCHEME 36
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SCHEME 37

for the synthesis of pyrrolo[2,3-b]- and indolo[2,3-
b]quinoxalines 120, 121 from 2-aminoquinoxalines
117 has been proposed by using the methodology
of intramolecular substitution of hydrogen at C-3 in
aminovinyl-substituted quinoxalines [99,100].

Fluorinated pyrido[2,3-b]quinoxalin-5,10-dioxides
122 and pyrimido[4,5-b]quinoxalin-5,10-dioxides
123 have been synthesized from 2,3-substituted
quinoxalin-1,4-dioxides 9. Hydrolysis of 9
(R = COOEt, R1 = CH2OCOCH3) with HCl results in
the formation of furo[3,4-b]quinoxalin-N,N-dioxide
125. The reaction of 9 (R = COOEt, R1 = CH2Br)
with primary alkylamines affords pyrrolo[3,4-
b]quinoxalin-N,N-dioxides 124, and the cyclization
reaction is accompanied with the substitution of
fluorine atom at C-7 (Scheme 37) [20,21,99].

Fluorinated [1,3]benzothiazin-4-ones. The syn-
thesis of fluorinated 2-substituted [1,3]benzothiazin-
4-ones 126, 127 has been performed through in-
teraction of polyfluorobenzoyl isothiocyanates 23
with cycloalkylimines or CH-active benzimidazoles
(Scheme 38) [101].

Analogously, [1,3]-benzothiazinones 128 and
their imidazo[2,1-b]-annelated derivatives 129 were

obtained by reacting polyfluorobenzoyl chlorides 85
with S,N-dinucleophiles (Scheme 39) [101,102].

Fluorinated Benzotriazines. Fluorinated 3-
phenyl-6-R1-7-R2-1,2,4-benzotriazines 131 (R2 = F,
R1 = OAlk) have recently been obtained by means
of cyclization of the corresponding 1,3,5-triphenyl-
formazanes 130 in HOAc/H2SO4 mixture. The
synthesis of benzotriazines 132 (R1 = OAlk1,
R2 = OAlk2) can be performed by reacting 3-phenyl-
6-R1-7-fluoro-1,2,4-benzotriazines with sodium
alkoxide (Scheme 40). Fluorinated 3-phenyl-1,2,4-
benzotriazines and their derivatives proved to be
active against severe diseases caused by smallpox
and other pathogenic viruses [103].

CONCLUSION

In a short review article, it is hardly possible to
discuss in detail all aspects of the chemistry of
fluorinated benzazoles and benzazines. Our inter-
est toward this subject comes from the fact that
fluorinated azaheterocycles are associated with a
broad range of biological activities and a high po-
tency exhibited by its many derivatives. This field of

SCHEME 38
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SCHEME 39

SCHEME 40

heterocyclic chemistry appears to be an intriguing
subject for further research and development of new
drugs.
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